Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Pu-Zhou Hu, Jian-Ge Wang, Lu-Fang Ma, Bang-Tun Zhao* and Li-Ya Wang

Department of Chemistry, Luoyang Normal University, Luoyang 471022, People's Republic of China

Correspondence e-mail: zbt@lynu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$
R factor $=0.021$
$w R$ factor $=0.056$
Data-to-parameter ratio $=19.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

1,3,4-Thiadiazolium-2-thiolate

Molecules of the title compound, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$, exist in the crystal structure in the zwitterionic form with the thiol group deprotonated. Hydrogen bonds between the protonated N atoms and the thiolate S atoms link the molecules in a zigzag packing arrangement parallel to the $a c$ plane.

Comment

Thiadiazoles have attracted increasing attention because of their potential applications in pharmaceutical, agricultural, industrial, coordination and polymer chemistry (Coyanis et al., 2002; Wang \& Cao, 2005).

(I)

Molecules of the title compound, (I), exist in the crystal structure in a zwitterionic form, with the thiadiazole atom N1 protonated and the thiol substituent deprotonated (Fig. 1). The thiodiazole ring is planar, with a maximum deviation from the ring plane of 0.0082 (7) \AA for atom N1. The thiolate atom S2 lies 0.018 (6) Å from that plane.
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 2$ hydrogen bonds link adjacent molecules in a zigzag network parallel to the ac plane (Figs. 2 and 3).

Experimental

Dilute hydrochloric acid (a few drops) was added to a solution of 2-mercapto- $1,3,4$-thiadiazole (1 g) in water (20 ml). Subsequent crystallization over 2 weeks gave colourless needle-like crystals of (I) suitable for X-ray diffraction analysis.

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$	Mo $K \alpha$ radiation
$M_{r}=118.18$	Cell parameters from 4625
Orthorhombic, Pbca	reflections
$a=8.623$ (2) А	$\theta=3.1-28.3^{\circ}$
$b=8.249$ (2) \AA	$\mu=0.97 \mathrm{~mm}^{-1}$
$c=13.075$ (3) \AA	$T=296$ (2) K
$V=930.0$ (4) \AA^{3}	Needle, colourless
$Z=8$	$0.32 \times 0.13 \times 0.13 \mathrm{~mm}$
$D_{x}=1.688 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Bruker APEX-2 CCD area-detector diffractometer	1066 independent reflections 1000 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.020$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-11 \rightarrow 11$
$T_{\text {min }}=0.747, T_{\text {max }}=0.884$	$k=-10 \rightarrow 10$
7289 measured reflections	$l=-16 \rightarrow 16$

Received 28 November 2005 Accepted 19 December 2005

Figure 1

A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0291 P)^{2}\right. \\
& +0.2499 P]
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.056$
$S=1.06$
1066 reflections
56 parameters
H -atom parameters constrained
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.26 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)

Extinction coefficient: 0.069 (3)
Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 2^{\mathrm{i}}$	0.86	2.40	$3.2527(13)$	170

Symmetry code: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2}$.
H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

The support of this work by the Natural Science Foundation of Henan Province (grant Nos. 2004601012, 0511020100 and 234) is gratefully acknowledged.

Figure 2
The one-dimensional chain structure of (I) formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (dashed lines) along the c axis.

Figure 3
The zigzag packing arrangement of (I) in the $a c$ plane. Hydrogen bonds are drawn as dashed lines.

References

Bruker (2004). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Coyanis, E. M., Boese, R., Autino, J. C., Romano, R. M., \& Della Védova, C. O. (2002). J. Phys. Org. Chem. 16, 1-8.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, D. Z. \& Cao, L. H. (2005). Chem. Res. Chin. Univ. 21, 172-176.

